手机贤集

工业平台

返回贤集网

Kulr将航天应用热管理技术引入电动汽车领域

言芬 2021-03-18 16:41:18

据外媒报道,热管理技术开发商Kulr将具有垂直排列碳纤维的相变材料用于电子产品和锂离子电池,以服务电动交通领域。


Kulr将航天应用热管理技术引入电动汽车领域


(图片来源:eetasia)


当电池达到极限状态时,可能会出现过热现象,对整个系统造成极大的破坏。由于电动汽车内缺乏空间和足够的通风面积,需要在热管理设计方面开发新的解决方案。Kulr科技集团(Kulr Technology Group)在火星任务中使用的热管理解决方案,或将推动下一代电动豪华跑车发展。


Kulr首席执行官Michael Mo表示,德拉科汽车公司(Drako Motors)将在新款电动超级跑车中应用其碳纤维技术。该技术由Kulr与美国国家航空航天局(NASA)共同设计,旨在调节太空中敏感部件的极端温度,使其保持长期运行状态。Drako GTE电动汽车平台为1200马力架构,凸显新的高性能热管理解决方案的重要性。


Kulr将航天应用热管理技术引入电动汽车领域


热管理


随着汽车行业转向电气化,以及5G通信技术的出现,电力电子世界正在发生变化,这些应用需要更大的功率。对电池和其他动力总成系统来说,还需要热管理解决方案或冷却技术。


电子在通过导体和半导体时会产生大量热量,影响电路的最终性能。现在,随着电子器件功率密度的提高,器件尺寸逐渐减小,散热问题日益突出。因此,在电源设备中,温度管理仍是关键因素。


在高功率组件之间的界面会产生热量,而散热器本身也会产生热量。界面之间微小的接触面积可能会影响热传导,表面不平整是产生接触热阻的主要原因。Mo指出:“Kulr的解决方案旨在增加两个表面之间的接触,降低界面的热阻。”


首选预防措施是选择一种分散电气和电子线路热量的策略。散热器的传热效率与散热器和周围空间之间的热阻有关。理想的散热器材料必须具有高导热系数、低热膨胀系数、低密度和低成本。


热界面材料


Kulr将具有垂直排列碳纤维(碳纤维热界面,或FTI)的相变材料用于电子和锂离子电池,以服务于电力交通、储能、电池安全、5G基础设施、云计算以及航空航天和国防应用。


碳纤维不仅可以散热,而且有助于减少尺寸、重量和制造复杂性。Kulr开发了一种专有制造技术,将5到10微米的碳纤维束整合至基材上,使其看起来和摸起来仿佛是黑色天鹅绒。


Drako GTE的电池能够产生1800连续安培和2200峰值安培,其设计旨在提供兆瓦级功率输出和冷却能力,以承受各种赛道级别的运动表现。


生产电动超级跑车涉及到极大的功率,为了保持有限的散热器空间,热界面非常重要。将用于高温太空环境的技术引入电动交通工具,可以提供更多的功率,从而保证适当的散热性,避免出现过热现象。Mo指出:“我们需要解决一些挑战,那就是消费者希望找到导热性能高且价格划算的产品。”


FTI解决方案系列包括Alcor和Mizar FTI材料。Mo表示:“Alcor的密度小于0.7g/cm^3,因为接触压力非常低,可以实现低热阻。MIZAR FTI能够提高电路板布局的功率密度,缓解机械应力,从而全面提高热稳定性和可靠性。


作为另一种解决方案,Hydra可用作锂离子电池的散热器,防止热失控传播(TRP),这是电动汽车中的重要参数。电池组中发生短路可能导致热失控,引起火灾和材料燃烧,例如使邻近电芯的温度提高。温度上升增加了邻近电芯短路的可能性。Mo表示:“Hydra旨在防止邻近电芯的温度升至100°C以上,避免热失控。”


Kulr将航天应用热管理技术引入电动汽车领域


作为电池测试的一部分,Kulr开发了LYRA内部短路(ISC)触发电芯,以识别电芯的故障条件,探讨电池组中可能出现的故障模式和安全问题。


随着电动汽车逐步推广,真正的挑战在于快速充电站。这会缩短电池的充电时间,但也会导致动力总成系统产生的热量显著增加,因此需要优化热流,开发受控热管理方案。


关于汽车热管理系统的那些事


汽车热管理系统是从系统集成角度出发,统筹热量与发动机及整车之间的关系,采用综合手段控制和优化热量传递的系统。其可根据行车工况和环境条件,自动调节冷却强度以保证被冷却对象工作在最佳温度范围,从而优化整车的环保性能和节能效果,同时改善汽车运行安全性和驾驶舒适性等。


汽车热管理系统主要用于冷却和温度控制,如对发动机、机油、润滑油、增压空气、燃料、电子装置以及排气再循环(EGR)的冷却和对发动机舱及驾驶室的温度控制等。汽车热管理系统由多个部件和传热流体组成,部件包括换热器、风扇、冷却液泵、压缩机、节温器、传感器、执行器、冷却水套和各种管道;传热流体包括空气、冷却液、机油、润滑油、废气、燃料、制冷剂等,这些部件和流体必须协调工作以满足车辆散热和温度控制要求。


通过上述介绍,大家都知道汽车热管理技术主要应用在汽车上,下边详细介绍一下具体应用在哪种类型的汽车上:


1、燃油汽车


燃油汽车的热管理系统由进气中冷回路、发动机冷却回路、空调系统回路及暖风芯体回路构成,回路与位于汽车前端的散热器相连,释放多余热量以维持回路正常运行温度。传统汽车以发动机为核心驱动,受到发动机属性的影响,汽车系统中超30%的热量需要由发动机冷却回路释放,避免发动机在高负荷运转状态下过热。发动机冷却回路包括冷却管、水箱、水泵、散热器等结构,利用冷却水完成热量传输与循环,稳定发动机运行温度在90℃上下。


2、电动汽车


电动汽车以电机取代发动机,其热管理系统由电机回路、电池回路、空调系统回路及暖风芯体回路构成。电动汽车的冷却回路与燃油汽车相似,但其工作目的及工作条件存在差异。例如,电机回路的合理运行温度不应超过80℃,而电池回路的合理运行温度应在20~35℃。通常情况下,空调系统回路负责汽车内部制冷,但也可对电池回路进行冷却。发动机被取代后,寒冷天气无法获取发动机余热进行供暖,而采用暖风芯体回路的正温度系数热敏电阻(PTC)将电能转化为热能。


Kulr将航天应用热管理技术引入电动汽车领域


目前大部分汽车热管理系统为开环控制,没有压力、流量、温度传感器对具体工作状况进行实时反馈,无法有效管理系统根据实际工作状态进行实时控制。在汽车运行中,由于驱动电机和控制器产生的热量没有得到充分利用,不但造成能量浪费,而且不利于节能环保。


汽车热管理技术的合理化应用可提高汽车整车能源利用效率,带来更优的节能环保性能,并帮助汽车使用者降低经济成本。随着科技的发展,汽车热管理系统一定会带给我们更多的惊喜。

来源:新华网客户端、盖世汽车资讯

注:文章内的所有配图皆为网络转载图片,侵权即删!

免责声明

最新回答

还没有人评论哦,抢沙发吧~

为您推荐